Le Monde et Nous

Partir à la découverte du monde qui nous entoure, comprendre quelques phénomènes de la nature, observer, se tenir informés des découvertes scientiques ...

30 octobre 2012

La "Faim" justifie les moyens

Article écrit dans le cadre de la première semaine thématique du Café des sciences à l'occasion d'Halloween.
Le thème: la mort et tout ce qui s’y rapporte ou presque…c’est ICI

Lorsqu'un individu passe de vie à trépas, démarrent un certain nombre de processus biologiques, physico-chimiques qui interagissent entre eux de manière complexe : certains sont très rapides, d'autres au contraire s'étalent sur plusieurs années ; ils ont pour effet de mener à plus ou moins courte échéance à la décomposition du corps jusqu'à l'état de poussière. Tâchons d'y voir un peu plus clair.

I- Les premières heures : post-mortem

La mort de l'individu est une chose, celle des cellules qui le composent en est une autre. Cette lente dégradation opère progressivement selon les conditions internes (caractéristiques du cadavre lui-même) et externes (température, humidité, concentration en oxygène...).
La mort marque, bien évidemment, l'arrêt de nombreux processus inhérents au bon fonctionnement du corps ; nous n'en citerons que quelques uns :
- arrêt de la circulation sanguine,
- absence d'apports nutritifs (sucre et oxygène) aux cellules,
- arrêt de l'apport en énergie aux cellules (arrêt des pompes ATPasiques),
- arrêt des processus de défense naturelle.

L'arrêt de l'approvisionnement en énergie vers les cellules, entraîne une accumulation des cations Ca2+ dans les cellules musculaires. Quel rôle joue ce cation ? avec son homologue Mg2+, il se lie à certaines protéines pour former des complexes, et va activer ou inhiber la contraction musculaire.
Bref, l'accumulation  de calcium, va provoquer la mise en place de ponts entre deux protéines très actives au niveau des muscles : la myosine (2 chaînes lourdes de 2000 AA aux extrémités très enroulées) très rigide, et l'actine.   A l'échelle moléculaire, le fait que les molécules de protéines se lient, s'appelle la coagulation, ce qui les rend plus compactes. Au niveau macroscopique  cela se traduit par le raidissement des muscles : c'est la rigidité cadavérique. Cet aspect est développé plus en détails dans le post de mon collègue cafetier  ICI.

Parallèlement, l'absence de circulation sanguine provoque la stagnation du sang, l'ouverture des vaisseaux sanguins  : des tâches violettes apparaissent sur le corps. On parle de lividités cadavériques.

Un troisième phénomène s'amorce également : l'absence de l'apport de nutriments vers les cellules provoque leur mort (il fallait bien s'y attendre !). Notons aussi que la chute de pH liée à l'accumulation d'acide lactique a pour effet de dénaturer les protéines composant les cellules : elles perdent leur intégrité de structure. Les enzymes qu'elles ont accumulées, sont alors libérées et vont se retourner contre les cellules elles-mêmes pour entamer leur réaction de digestion : c'est de l'auto-digestion, autrement appelée autolyse ou autophagie.

L'autolyse va progressivement toucher tous les tissus. Lorsque ceux des parois intestinales sont touchés,  les bactéries qui s'y trouvent (le microbiote)  vont être libérées. Comme les processus de défense naturelle sont anéantis, les micro-organismes vont proliférer de façon exponentielle et leur activité va s'accroître : la décomposition est amorcée.

II- Premières étapes de la décomposition
C'est l'action des micro-organismes issus du microbiote qui marque le départ de la décomposition. Les micro-organismes, comme tout être vivant, doivent trouver des nutriments pour leur propre construction cellulaire et leurs besoins en énergie (en particulier du carbone, oxygène, hydrogène, azote, soufre, phosphore) ; ils vont donc consommer, dégrader les molécules organiques complexes des tissus du cadavre (principalement les protéines : de longues chaînes d'acides aminés imbriquées sur elles-mêmes et les unes dans les autres). La modification des protéines va se faire en plusieurs étapes :
- une phase de dénaturation qui va surtout toucher les structures secondaires, tertiaires et quaternaires, c'est à dire la façon dont les chaînes peptidiques s'organisent les unes par rapport aux autres.
Cette première étape rendra la protéine affaiblie, plus sensible aux attaques enzymatiques car elle aura perdu sa fonction biologique.
- une  phase de dégradation proprement dite,  où cette fois, la structure primaire est touchée : la chaîne peptidique est coupée ; des petites molécules de gaz et des fragments protéiques élémentaires apparaissent (les longues chaînes sont un peu coupées, en poly-peptides par ex). On parle de dégradation enzymatique. Rappelons  que le rôle des enzymes est d'accélérer de façon vertigineuse la vitesse de réaction de dégradation (on parle de biocatalyse).

Les gaz issus de cette première étape de dégradation vont s'accumuler, faire gonfler le cadavre,  faire éclater certains organes. C'est l'apparition de petits molécules protéiques qui est responsable de la coloration verdâtre qui apparaît sur l'abdomen (là où se trouve la vésicule biliaire, lieu propice au développement bactérien, le pancréas riche en enzymes) et sur la région iliaque (là où se trouve le point de départ  du côlon, où l’activité microbienne est maximale).
De nouveaux éléments extérieurs vont alors intervenir. En effet, la dégénérescence des tissus  est liée à l'action de trois types de faune extérieure :

- les bactéries dont les premières sont celles de notre propre flore intestinale,
- les champignons saprophytes qui par réaction enzymatiques se nourrissent de la matière organique en décomposition,
- les insectes dont l'activité va être modulée selon les conditions de température, ou d'humidité. Les mouches par exemple, vont pondre des oeufs et les larves vont se nourrissent du tissu humain.

Toutes ces espèces vont se succéder dans un ordre précis (ce qui d'ailleurs permet de dater une mort) selon le travail de dégradation réalisé par "l'équipe" précédente... Comme sur un grand chantier ! La putréfaction commence.

La décomposition bat son plein
(Dessin de Valentin Baugé)

III - Putréfaction active
L'activité microbienne (avec d'autres joyeusetés) bat maintenant son plein avec son cocktail d'enzymes de plus en plus ciblées vers les liaisons chimiques les plus coriaces.

L'être humain étant constitué approximativement de 65 % d'eau, 20 % de protéines, 10 % de lipides,  1 % de glucides et 5 % de minéraux, nous allons passer en revue les réactions subies par ces différentes catégories.

Dégradation des organes et des muscles : action sur les protéines
Selon le type de micro-organismes présents, le type de tissu concerné, différentes liaisons vont se couper.
- Hydrolyse ou protéolyse : Il s'agit tout simplement de poursuivre le travail déjà entamé et couper les chaînes d'acides aminés aux endroits les plus fragiles, en chaînes plus courtes (des polypeptides) voire en acides aminés (AA). Les protéines les plus résistantes, épargnées pendant les premiers instants de la décomposition sont de plus en plus menacées au cours du temps (ex: le collagène (trois chaînes polypeptidiques en hélice associées sera très résistante, donc hydrolysée tardivement).
Cet effet explique l'ordre de décomposition (selon la nature des protéines qui les compose) des différentes parties du cadavre : larynx puis estomac, intestins puis poumons puis cerveau, coeur, vessie, utérus et enfin peau, cheveux et ongles et enfin les os (voir dernier paragraphe).
Réaction de décarboxylation
Les AA produits par la protéolyse sont attaqués par certains enzymes   (les décarboxylases microbiennes) ce qui évidemment éjecte une petite molécule de CO2 : les acides aminés sont alors transformés en amines biogènes.
Quelques exemples (les plus parlants, car il y a foison) :
L'acide aminé " ornithine" se transforme en diamine qui porte le doux nom de  putrescine de formule NH2-(CH2)4-NH2
L'acide aminé "lysine"  se transforme en amine au doux nom également de cadavérine de formule NH2-(CH2)5-NH2.
Ces deux amines sont particulièrement remarquables puisque ce sont elles qui donnent les odeurs nauséabondes caractéristiques de la chair en putréfaction. Celles qui attirent les charognards.


Réaction de désamination
Le terme ultime de la décomposition des protéines est une désamination des acides aminés libérés par la protéolyse : l'azote des AA est éliminé sous forme d'ammoniac.

Dégradation des tissus adipeux : action sur les lipides
On retrouve les lipides (sous la forme principale de tri-glycérides)  dans les tissus adipeux qui contiennent également de l'eau et des protéines.
L'un des représentants majeur des tri-glycérides est l'acide oléique (peigne à trois dents, chaque dent étant une fonction ester).
Comme précédemment, lors de la première étape de l'attaque : le tri-ester subit une hydrolyse (encore appelée  saponification) ce qui conduit à des acides gras (une longue molécule avec une grande chaîne carbonée). Ces derniers (en conditions anaérobies)peuvent ensuite subir une hydrogénation (les liaisons doubles sont transformées en simples liaisons).
La réaction de saponification est la même que celle qui est mise en jeu pour la fabrication de savons. Ainsi, lorsque cette dernière est poussée à l'extrême, le gras de cadavre prend l'aspect du savon, et forme une cire adipeuse (l'adipocire)

Adipocire issu d'une saponification
Source : http://thiago.free.fr/mortuary/medleg/saponi.html

Action sur les glucides

Les chaînes de glucose vont elle-aussi être cassées progressivement de façon à faire réapparaître les maillons  "glucose" qui peuvent se décomposer complètement (CO2 et eau) ou de façon incomplète avec production de toute une série d'acides selon le type de bactéries présentes. On voit apparaître en particulier l'acide lactique (celui qu'on connaît bien après un effort intense lorsque la consommation du glucose est supérieure aux apports en oxygène).

Le travail de nettoyage des tissus mous est achevé au bout d'un an environ. Des cas particuliers, dans des environnements particulières riches en biote  montrent des durées de décomposition bien plus accrues (une dizaine de jours...ex d'un cadavre de vache laissé sur place, à l'air libre qui se dégrade en 12 jours)

Réduit à sa plus simple expression(dessin de Valentin Baugé)

IV- La fin de la décomposition : la minéralisation

Après avoir touché la partie molle, la décomposition va se poursuivre avec la dégradation du squelette. Mais pour atteindre ce stade, plusieurs dizaines d'années sont nécessaires.
Les os constitués :
- de collagène,
- d'une fraction minérale (appelé hydroxy-apatite, de la famille des phosphates, partie très imbriquée au collagène)
- et d'une substance de base organique.
Des bactéries particulières parviennent à couper le collagène jusqu'à la fraction acide aminé. L'apatite se trouve libéré et va se dégrader : en particulier les ions calcium s'échappent, les os se décalcifient, se fragilisent et peuvent subir un phénomène de dissolution (selon T°, pH, humidité, faune biotique). Et tout redevient poussière ! 

 Pour en savoir plus :

http://www.forenseek.org/Decomposition-d-un-cadavre.html
http://cte.univ-setif.dz/ses2/haichournora/proteinecatabolisme.html
http://en.wikipedia.org/wiki/Chemical_process_of_decomposition
http://fr.wikipedia.org/wiki/Datation_des_cadavres 

Posté par pascale72 à 21:04 - Commentaires [0] - Permalien [#]

16 octobre 2012

De l'art de faire du fil (1) : coton et viscose

En écho à un précédent article traitant des étonnantes propriétés du fil d’araignée et des recherches pour l’instant infructueuses afin de le synthétiser, j’élargis un peu le champ d’investigation sur le thème du textile…
Quels sont les différents types de textiles ? Comment sont-ils fabriqués et surtout comment s’expliquent les propriétés des tissus ? mouillables ou imperméables, résistants ou non à la chaleur, souples ou rigides, élastiques, infroissables … Qu’est ce que les tissus innovants ? ces tissus du futur dont certains sont déjà en ligne de production ? Qu’est-ce qui distingue le coton des tissus synthétiques tels que le Tergal©, le nylon, l’acrylique ou encore le Kevlar©? Alors cap sur les fibres textiles !

Fil de coton vu au microscope électronique

On distingue généralement trois  types de  fibres textiles produites par différents procédés  :
- les fibres naturelles (telles que le coton, la soie, la laine) issues des  ressources naturelles sans transformation chimique  : les végétaux (les fibres de coton entourent la graine) ou les animaux (poils d’animaux cardés et filés pour la laine, fils de soie tissés, produits par les vers à soie).
- les fibres artificielles qui sont élaborées à partir de ressources naturelles (comme la cellulose des végétaux) mais transformées par un traitement chimique ; il s’agit par exemple de la viscose ou l‘acétate de cellulose.
- les fibres synthétiques, non issues de la nature : il s’agit de produits développés à partir  du pétrole (les polyamides tels que le nylon et le Kevlar©, le polyester, l’acrylique, ou encore l’élasthanne)

Le point commun entre ces trois approches est la notion de fibre qui nous évoque quelque chose d’allongé, d’étiré… En effet, d’un point de vue moléculaire, la molécule est très longue : on parle d’ailleurs de « macromolécule« , ou de chaîne polymérisée :  un assemblage d’un grand nombre de petites molécules (ou monomères) collées les unes aux autres.
Toutes les propriétés d’usage  du textile vont être la conséquence :
- de la nature chimique des molécules monomères,
- de la force des liaisons inter et intra-moléculaires,
- de la façon dont les molécules s’organisent dans l’espace : organisation périodique avec des chaînes bien rangées parallèlement (on parle de cristallinité), ou des chaînes en pêle-mêle  (on parle d’état amorphe).

Passons les en revue  afin de mettre en évidence leurs spécificités.
Fibres naturelles : cas du coton
La brique élémentaire des végétaux est la cellulose, qui compose la paroi de leurs cellules. Comment est-elle élaborée ? Comme évoqué dans un ancien article, les végétaux synthétisent du glucose, molécule cyclique à 6 carbones. Puis les molécules de glucose se mettent bout à bout : de longues chaînes linéaires de glucose apparaissent (celles-ci peuvent  s’allonger très fortement dans le sens de la longueur).
A l’intérieur d’une chaîne, très longue, des interactions spécifiques entre atomes apparaissent (due à l’attirance de charges opposées) ce sont des liaisons hydrogène intramoléculaires : elles concernent des liaisons entre groupes -OH des différentes chaînes. Enfin, ces longues chaînes ne restent pas indépendantes et se lient entre elles par d’autres liaisons hydrogène glucose-glucose (des LH intermoléculaires)  ce qui forme des couches d’environ 60 chaînes polymères qui s’associent en fibres. C’est la présence de ce réseau très dense et très complexe en LH qui donne à la cellulose  sa rigidité.
Les chaînes peuvent donc s’organiser de façon variable selon la configuration des LH (nombre, longueur des liaisons) et les atomes mis en jeu (encombrement et molécules environnantes) : différents degrés de cristallinité apparaissent.

Enchevêtrement des fibres cellulose (LH en pointillés)

Organisation des chaînes pour former la fibre de cellulose

Dans le cas du coton, la fibre  est directement récupérée sur l’arbre : elle se forme autour des graines sous la forme d’une houppe blanchâtre. Il s’agit de fibres de cellulose quasi pures (95%).
Le coton hydrophile ou ouate est la fibre de coton utilisée sans modification. Pour en faire un tissu, il suffira d’enchevêtrer judicieusement les fibres (filature et tissage).
En ce qui concerne ses propriétés, nous retiendrons que le coton est hydrophile (gonfle sous l’eau), que le tissu est de grand confort mais froissable, qu’il présente de bonnes propriétés mécaniques mais peut rétrécir au lavage.
Pourquoi ?
Propriétés mécaniques : le coton offre une bonne résistance qui s’explique par la forte densité du réseau de liaisons hydrogène et la grande cristallinité. En général, la cristallinité  se situe autour de 75 % (soit 25% de zones amorphes)

Pouvoir absorbant : La molécule d’eau est très favorable à la formation de liaisons hydrogène à cause de sa polarité (les électrons des liaisons covalentes sont plutôt déplacés vers l’oxygène).  Ainsi pour la cellulose au contact de l’eau,  certaines liaisons hydrogène (LH) reliant en couches les chaînes de glucose se rompent ; c’est en effet thermodynamiquement plus avantageux pour l’ensemble que la molécule d’eau s’y glisse. Il y a donc gonflement de la cellulose… les chaînes glissent, sont écartées, déformées .
En raison de la structure complexe des fibres de cellulose, les processus de gonflement ne sont pas homogènes le long de la fibre. Ils se produisent préférentiellement dans les régions amorphes, les plus faciles à déformer.

Froissabilité :
Lors du séchage, les molécules d’eau sont éliminées : les LH entre chaînes se reforment mais de façon aléatoire et différente de l’état initial : c’est la raison des plis. Il y aura d’autant plus de plis qu’une contrainte de pression a été exercée pendant le lavage : les LH inter-moléculaires se rompent d’autant plus facilement sous la contrainte.
Un repassage à la vapeur sera efficace pour inverser le processus. La vapeur casse les LH mal formées puis la contrainte du fer permet de reformer celles d’origine.

Rétrécissement au lavage :
Les molécules de cellulose sont plus ou moins repliées au niveau des zones amorphes (zone non organisée de faible rigidité). Comme nous l’avons vu, lorsque la fibre est mouillée, les zones amorphes gonflent (rupture des LH).  Lors du séchage, les fibres se replient mais différemment : il y a rétrécissement.

Confort du tissu :
Le confort au port de tissu en coton s’explique principalement par deux aspects :
- il absorbe l’humidité du corps ce qui, en cas de temps chaud et donc de transpiration apporte une sensation de fraîcheur.
- c’est un textile qui assure la circulation d’air : les chaînes entortillées les unes autour des autres, laissent des espaces qui emprisonnent de l’air. Cet effet en est accentué lors de l’étape de tissage.
Les fibres synthétiques (à voir dans le volet II) devront être tissées en combinaison avec le coton pour produire le même effet.

Fibres artificielles : cas du viscose

Fibres de viscose observées au microscope électronique (Source ICI) http://www.efpg.inpg.fr/

L’intérêt de la fabrication de fibres artificielles, est de partir non pas de fibres de coton mais de fibres de cellulose issues de la biomasse ce qui assure ressource plus abondante. Les chaînes de cellulose naturelles font alors l’objet d’une attaque chimique afin d’en modifier leur propriétés. La facilité de ces réactions sera fonction de la disponibilité des groupements hydroxyles (OH). Comme expliqué plus haut, le réseau dense de LH gêne l’accès des réactifs autour des chaînes.
La première étape est donc de diminuer la densité des LH en trouvant un solvant capable de briser les LH entre chaînes et de s’y substituer.  Le cas de figure le plus ancien est l’attaque par la soude dans des conditions particulières de concentration et de température.  Cette première étape permet de casser les LH, rendant la cellulose plus réactive, les atomes plus accessibles, avec un dépolymérisation contrôlée. C’est ensuite le disulfure de carbone (CS2) qui est ajouté  comme solvant. Les chaînes de cellulose sont écartées, on obtient le xanthate de cellulose qui après vieillissement est dissout une nouvelle fois dans la soude : une solution visqueuse appelée « viscose » apparaît. La solution est extrudée dans une filière ; les fils produits sont coagulés dans un bain de produits chimiques puis étirés : c’est à ce moment, que se produit la cristallisation de la cellulose (on parle de cellulose régénérée) mais dans une configuration différente de celle du produit brut de départ.
De la viscose  et des caractéristiques des fils extrudés, vont apparaître différents produits comme la rayonne ou la fibranne.

Différences de propriétés avec le coton
A cause de la dépolymérisation pratiquée lors du procédé de fabrication, on passe d’une chaîne allant jusqu’à 15000 unités monomères pour le coton, à un degré de polymérisation de l’ordre de 500 unités pour la viscose :  la cristallinité en est donc réduite (60 % environ). Il en résulte, que la structure chimique est proche de celle du coton, mais avec de moins bonnes propriétés.
En particulier, on observe une moins bonne ténacité que le coton : la viscose se déchire plus facilement (notamment lorsqu’elle sous l’eau).
Comme la proportion de phase amorphe est plus élevée, la viscose se déforme et se détend beaucoup plus facilement (environ deux fois plus).
Il en résulte également que la rétention d’eau est beaucoup plus élevée pour la viscose.

Un autre procédé voisin existe ; il repose sur le même principe  (à la différence près, qu’aucun produit toxique n’est utilisé) : il s’agit du procédé Lyocell avec le NMMO (N-Methylmorpholine-N-oxide) comme solvant. C’est le procédé de la fibre bio à la mode !

Le volet II permettra d’aborder les fibres synthétiques et leurs propriétés.

Pour en savoir plus :
http://fr.wikipedia.org/wiki/Cellulose
http://fr.wikipedia.org/wiki/Coton
http://www.futura-sciences.com/fr/doc/t/technologie/d/du-vegetal-aux-textiles_585/c3/221/p2/
http://cerig.efpg.inpg.fr/memoire/2010/fibre-cellulose-textile.htm

http://www.ehow.com/about_6662538_cotton-absorbent_.html
http://www.nearchimica.it/admin/newspdf/Viscose%20recommendations.pdf
 

Posté par pascale72 à 13:10 - Commentaires [3] - Permalien [#]